API

Documentation for MixedModelsBLB.jl's functions.

Index

Functions

MixedModelsBLB.blb_one_subsetFunction
blb_one_subset(rng, m; N, subset_size, n_boots, method, solver, verbose, nonparametric_boot)

Performs Bag of Little Bootstraps on a subset.

Positional arguments

  • rng: random number generator. Default to the global rng.
  • m: an object of type blblmmModel or WSVarLmmModel

Keyword arguments

  • N: number of individuals/clusters in the full dataset.
  • subset_size: number of individuals/clusters in each subset.
  • n_boots: number of bootstrap iterations. Default to 1000.
  • method: a symbol, either :ML or :WiSER.
  • solver: solver for the optimization problem.
  • verbose: Bool, whether to print bootstrap progress.
  • nonparametric_boot: Bool, whether to use nonparametric bootstrap. For WiSER models, only nonparametric bootstrap is supported.

Values

  • subset_estimates: an object of type SubsetEstimates
source
MixedModelsBLB.blb_full_dataFunction
blb_full_data(rng, datatable; feformula, reformula, wsvarformula, id_name, cat_names, subset_size, n_subsets, n_boots, method, solver, verbose,  nonparametric_boot)

Performs Bag of Little Bootstraps on the full dataset

Positional arguments

  • rng: random number generator. Default to the global rng.
  • datatable: a data table type that is compatible with Tables.jl.

Keyword arguments

  • feformula: model formula for the fixed effects.
  • reformula: model formula for the random effects.
  • wsvarformula: model formula for the fixed effects of the within-subject variance. For linear mixed models, it should be @formula(y ~ 1). Only need to be specified when method = :WiSER.
  • id_name: name of the cluster identifier variable. String.
  • cat_names: a vector of the names of the categorical variables.
  • subset_size: number of clusters in the subset.
  • n_subsets: number of subsets.
  • n_boots: number of bootstrap iterations. Default to 1000
  • solver: solver for the optimization problem.
  • method: fitting the model by maximum-likelihood (:ML) or GEE (:WiSER)
  • verbose: Bool, whether to print bootstrap progress (percentage completion)
  • nonparametric_boot: Bool, whether to use Nonparametric bootstrap

Values

  • result: an object of the blbEstimates type
source
MixedModelsBLB.blb_dbFunction
blb_db(rng, con, table_name; feformula, reformula, id_name, cat_names, subset_size, n_subsets, n_boots, solver, verbose,  nonparametric_boot)

Performs Bag of Little Bootstraps on databases.

Positional arguments

  • rng: random number generator. Default to the global rng.
  • con: an object of type MySQL.Connection created by the function DBInterface.connect.
  • table_name: table name for the longitudinal data.

Keyword arguments

  • feformula: model formula for the fixed effects.
  • reformula: model formula for the random effects.
  • id_name: name of the cluster identifier variable. String.
  • cat_names: a vector of the names of the categorical variables.
  • subset_size: number of clusters in the subset.
  • n_subsets: number of subsets.
  • n_boots: number of bootstrap iterations. Default to 1000
  • solver: solver for the optimization problem.
  • verbose: Bool, whether to print bootstrap progress (percentage completion)
  • nonparametric_boot: Bool, whether to use Nonparametric bootstrap

Values

  • result: an object of the blbEstimates type
source
MixedModelsBLB.confintFunction
confint(subset_ests, level)

Calculate confidence intervals using estimates from one subset.

Positional arguments

  • subset_ests: an object of type SubsetEstimates
  • level: confidence level, usually set to 0.95
source
confint(blb_ests, level)

Calculate confidence intervals using estimates from all subsets.

Positional arguments

  • blb_ests: an object of type blbEstimates
  • level: confidence level, usually set to 0.95
source
Missing docstring.

Missing docstring for fixef. Check Documenter's build log for details.

Missing docstring.

Missing docstring for vc. Check Documenter's build log for details.